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Chapter 1

Introduction

1.1 Gradient Descent

An Artificial Neural Network (ANN) can be written as Y = h(θ,X).

The goal of an optimization problem over such a network is to approximate correct

value of Y by fixing h and then using a loss function f to estimate the parameters θ.

Ideally we want that the generalization risk f(θ) = E(x,y)∼pdataL(h(θ,X), Y ) is minimized

where p is the data generating distribution. But as p is not available to us, we optimize

f ∗(θ) = E(x,y)∼p̃dataL(h(θ,X), Y ), where p̃ is the empirical distribution available with us.

We hope that by minimizing f ∗, we would also minimize f .

We now minimize the empirical risk which can be written as:

f ∗(θ) = E(x,y)∼p̃dataL(h(θ,X), Y ) =
1

m

∑
i

L(h(θ, xi), yi)

Gradient descent is one of the approaches to update the parameters of the network. It

is an iterative first-order optimisation algorithm used to find a local minimum/maximum

of a given function. This method is commonly used in machine learning (ML) and deep
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learning(DL) to minimise a cost/loss function. The iterative parameter update is defined

as:

θt = θt−1 − η ∇θ f ∗(θ)

1.2 Diverging or Overshooting the minima

A common problem with gradient descent based algorithms is that they often diverge or

overshoot the local or global minima, which makes their convergence impossible. This is

frequent for non-convex loss functions but can occur in convex loss functions also. This can

occur when ∇ f− > ∞ due to extremely high gradient value which makes η ∇ f− > ∞.

Thus, the optimization diverges. In case the curve becomes very steep, it is not able to

”descend down” and becomes highly susceptible to the chosen learning rate η which we

can’t determine beforehand. This also leads to a non-deterministic pattern of the descent,

which may not be desirable. This dilemma or choosing a high or a low learning rate is

summarized in Figure 1.1.

Fig. 1.1 Dilemma of choosing a high or low learning rate. Source:
https://praneethnetrapalli.org/
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1.3 Intuition to normalize the descent

We make an attempt to normalize the descent, i.e. make sure that the descent does not

diverge and the updates are consistent with each other. For this, we make certain changes

to the update rule which are highlighted in Chapter 3. In sense, we make the descent

non-monotonic over the l2 norm of gradient value (||∇θf(θ)||2), i.e. if the norm of gradient

is small, the parameters updates should be small; if the norm of gradient is high, then

also the parameter updates should be small; and the maximum parameter update would

happen when the norm of gradient is some moderate value. We model this based on the

projectile motion of a particle when hit from an inclined plane using Newton’s Laws of

Motion. This is shown in Figure 1.2.

Fig. 1.2 Taking inspiration from projectile motion on an inclined plane.

1.4 Constraints and Goals of this hypothesis

The constraints of forming such our hypothesis lie on our understanding of gradient descent

and non-convex optimization. We model the next results based on having a gradient descent

optimizer which:

1. Does not perform worse as compared to other optimizers

3



2. Diverges in minimum number of cases

3. Its convergence and convergence bound can be proved

4. It has a similar asymptotic time complexity as compared to other optimizers

.

We treat the below goals as our best case scenarios:

1. Gives a lower loss value/better convergence value

2. It takes less number of epochs to reach convergence

3. Converges towards global minima instead of local minima

4. Its REGRET [BN12] bound is O( 2
√
T )

4



Chapter 2

Review of Prior Works

Gradient descent is one of the most popular algorithms to perform optimization and by

far the most common way to optimize neural networks. In this section we will look at a

few of the famous algorithms (referred to as optimizers henceforth) suggested in various

literature. These algorithms, however, are often used as black-box optimizers, as practical

explanations of their strengths and weaknesses are hard to come by. [Rud16]

2.1 Gradient Descent Optimizers

2.1.1 Momentum [Qia99]

SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply

in one dimension than in another, which are common around local optima. In these sce-

narios, SGD oscillates across the slopes of the ravine while only making hesitant progress

along the bottom towards the local optimum. Momentum is a method that helps accelerate

SGD in the relevant direction and dampens oscillations. It does this by adding a fraction

γ of the update vector of the past time step to the current update vector.

vt = γ vt−1 + η ∇θ f(θ)

5



θt = θt−1 − vt

2.1.2 Adagrad [DHS11]

Adagrad adapts the learning rate to the parameters, performing smaller updates (i.e. low

learning rates) for parameters associated with frequently occurring features, and larger

updates (i.e. high learning rates) for parameters associated with infrequent features.

θt+1 = θt −
η√

Gt + ϵ
⊙ gt

Gt ∈ Rdxd here is a diagonal matrix where each diagonal element i, i is the sum of the

squares of the gradients w.r.t. θ i up to time step t, while ϵ is a smoothing term that avoids

division by zero.

2.1.3 Adadelta [Zei12]

Adadelta is an extension of Adagrad that seeks to reduce its aggressive, monotonically

decreasing learning rate. Instead of accumulating all past squared gradients, Adadelta

restricts the window of accumulated past gradients to some fixed size w. The authors first

define another exponentially decaying average, this time not of squared gradients but of

squared parameter updates,

E[∆θ2]t = γE[∆θ2]t−1 + (1− γ)∆θ2t

The root mean squared error of parameter updates is thus:

RMS[∆θ]t =
√
E[∆θ2]t + ϵ

Since RMS[∆θ]t is unknown, we approximate it with the RMS of parameter updates until

the previous time step. Replacing the learning rate η in the previous update rule with

6



RMS[∆θ]t−1 finally yields the Adadelta update rule:

∆θt = −RMS[∆θ]t−1

RMS[g]t
gt

θt+1 = θt +∆θt

(2.1)

2.1.4 RMSProp

RMSprop is an unpublished, adaptive learning rate method proposed by Geoff Hinton in

Lecture 6e of his Coursera Class. 1

E[g2]t = 0.9E[g2]t−1 + 0.1g2t

θt+1 = θt −
η√

E[g2]t + ϵ
gt

(2.2)

RMSprop as well divides the learning rate by an exponentially decaying average of squared

gradients. Hinton suggests γ to be set to 0.9, while a good default value for the learning

rate η is 0.001.

2.1.5 Adam [KB14]

Adaptive Moment Estimation (Adam) is another method that computes adaptive learning

rates for each parameter. In addition to storing an exponentially decaying average of past

squared gradients vt like RMSprop, Adam also keeps an exponentially decaying average of

past gradients mt, similar to momentum.

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

(2.3)

mt and vt are estimates of the first moment (the mean) and the second moment (the

uncentered variance) of the gradients respectively, hence the name of the method. As

1http://www.cs.toronto.edu/ tijmen/csc321/slides/lecture slides lec6.pdf
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mt and vt are initialized as vectors of 0’s, the authors of Adam observe that they are

biased towards zero, especially during the initial time steps, and especially when the decay

rates are small. They counteract these biases by computing bias-corrected first and second

moment estimates:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(2.4)

Then they are used in the Adam update rule:

θt+1 = θt −
η√

v̂t + ϵ
m̂t

The authors propose default values of 0.9 for β1, 0.999 for b2, and 10−8 for ϵ.

Fig. 2.1 Various Optimizers over Loss contour plot

2.2 Conclusion

This chapter provided details of the some of the popular gradient descent optimizers sug-

gested in various literature. If your input data is sparse, then you likely achieve the best

8



Fig. 2.2 Various Optimizers over a saddle point

results using one of the adaptive learning-rate methods. An additional benefit is that you

won’t need to tune the learning rate but likely achieve the best results with the default

value. In summary, RMSprop is an extension of Adagrad that deals with its radically di-

minishing learning rates. It is identical to Adadelta, except that Adadelta uses the RMS

of parameter updates in the numinator update rule. Adam, finally, adds bias-correction

and momentum to RMSprop. Insofar, RMSprop, Adadelta, and Adam are very similar

algorithms that do well in similar circumstances. Insofar, Adam might be the best overall

choice.

In the next chapter, we discuss our own normalizing factor for these optimizers.

9
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Chapter 3

Normalizing parameter update

3.1 Normalizing factor

We propose a novel gradient descent optimizer which is non-monotonic on the gradient

value opposite to other gradient descent optimizers as seen in the Chapter 2. The new

update rule on the model parameters θ ∈ Rn is defined as:

∆θi = −max

(
ϵ,

|∇fi|h

|1 +∇f 2
i |h

)
.∇fi (3.1)

where, ∆θi = parameter change along ith dimension,

∇fi = gradient of loss function f along ith dimension

h = hyperparameter to control convergence

ϵ = small constant R as smoothning term

3.2 Intuition for this normalization factor

As seen in Figure 1.2, we assume our descent to be analogous to a projectile motion on

inclined plane. Using simple Newton’s Laws of Motion we can show that the range of the

11



projectile ∆x would approximately be equal to:

∆x ≈ − sin(θ) cos(θ) ≈ − ∇f

1 + |∇f |2

Expanding this to Rn as x ∈ Rn,

∆xi = − 1

1 + |∇fi|2
.∇fi, where tan(θ) = ∇f

We now Vectorize this operation to improve the time complexity,

∆ = − 1

1 + F
⊙∇f

where,

F =



∇f 2
0 0 0 0

0 ∇f 2
1 0 0

0 0 ∇f 2
2 0

0 0 0 ∇f 2
3


This update normalization factor will make sure that the descent is of the form as shown

in Figure 3.1.

3.3 Variations to form update rule

To improve the performance of our optimizer, we add terms to it and make certain mod-

ification as inspired from other optimizers, particularly Momentum and RMSProp. The

variations are highlighted below:

12



Fig. 3.1 Non-monotonic nature of normalization factor

Vanilla

This has same expression which we have shown above. It is henceforth referred to as ”my

optimizer”.

∆θi = −max

(
ϵ,

|∇fi|h

|1 +∇f 2
i |h

)
.∇fi

3.3.1 Vanilla + Momentum

We add a first order momentum term to accelerate our descent and to add a fraction of the

previous update to the current update vector. It is henceforth referred to as ”my optimizer

+ momentum”.

∆θi,t = −max

(
ϵ,

|∇fi|h

|1 +∇f 2
i |h

)
.∇fi − γ ∆θi,t−1

where γ ∆θi,t−1 becomes the first order momentum term to accumulate previous gradients.

3.3.2 Vanilla + EMA

We use the Exponential Moving Average (EMA) of the previous gradients to account for

those values in a similar fashion as of RMSProp. It is henceforth referred to as ”my

optimizer + EMA”.

E[∇f 2]t = 0.9E[∇f 2]t−1 + 0.1∇f 2
t

13



∆θi = −max

(
ϵ,

|∇fi|h

|1 +∇f 2
i |h

)
.

η
2
√

E[∇f 2]t + ϵ
.∇fi

3.3.3 Vanilla + Momentum + EMA

We add a momentum term to the previous update rule. It is henceforth referred to as ”my

optimizer + Momentum + EMA”.

E[∇f 2]t = 0.9E[∇f 2]t−1 + 0.1∇f 2
t

∆θi,t = −max

(
ϵ,

|∇fi|h

|1 +∇f 2
i |h

)
.

η
2
√

E[∇f 2]t + ϵ
.∇fi − γ ∆θi,t−1

In the next chapters, we analyse the effect of the normalizing factor and the momentum

and EMA term both theoretically and emperically.

14



Chapter 4

Theoretical Analysis

4.1 Convergence Validity Theorem

Theorem 4.1.1. A function f : Rn− > R is convex and differentiable, and that its gradient

is Lipschitz continuous with constant L > 0, i.e. we have ||∇fx − ∇fy|| ≤ L||x − y||2 for

any x, y. Then, if we run gradient descent with update rule as ∆θi =
|∇fi|h

|1+∇f2
i |h

.∇fi, it will

always converge provided h > log2L− 1.

Proof: This step of the proof considers x ∈ R and f : R− > R with Lipschitz constant as

Li. The same result is expanded to n dimensions in the end.

As ∇f is Lipshitz continuos, we do a quadratic expansion of f around some value f(x)

to obtain:

f(y) ≤ f(x) +∇f(x)T (y − x) +
1

2
∇2f(x)||y − x||22

f(y) ≤ f(x) +∇f(x)T (y − x) +
1

2
Li||y − x||22

For gradient descent step, y = x+ = x− |∇fx|h
|1+∇f2

x |h
.∇fx.

f(x+) ≤ f(x) +∇fT
x (x

+ − x) +
1

2
Li||x+ − x||22

15



f(x+) ≤ f(x) +∇fT
x (x− |∇fx|h

|1 +∇f 2
x |h

.∇fx − x) +
1

2
Li||x− |∇fx|h

|1 +∇f 2
x |h

.∇fx − x||22

Let t = |∇fx|h
|1+∇f2

x |h
.∇fx,

f(x+) ≤ f(x)−∇f(x)T t∇f(x) +
1

2
Li||t∇f(x)||22

f(x+) ≤ f(x)− (1− 1

2
Lit) t||∇f(x)||22 (4.1)

Now, t||∇f(x)||22 will be always +ve as both t and ||∇f(x)||22 are always +ve, except

when ∇f(x) is 0.

For the term (1− 1
2
Lit) to be +ve:

0 < 1− 1

2
Lit

Li <
2

t
(4.2)

Now, t = t(∇fx) would be maximum at points where d(t(∇fx))
d∇fx

= 0 and d2t(∇fx)
d∇f2

x
< 0.

By solving these, it can be shown that t(∇fx) would be maximum when ∇fx = 1 and its

maximum value would be 1
2h
. Hence, 2

t
’s minimum value would be 2h+1.

∴ If Li < 2h+1 or h > log2Li − 1, then (1− 1
2
Lit)t||∇f(x)||22 will always be +ve.

From Equation 4.1, we can now follow that objective function value strictly decreases

with each iteration of the gradient descent until it reaches the optimal value f(x) = f(x∗).

This result only holds if our chosen h > log2Li − 1.

We now expand the result to n - dimensions considering f : Rn− > R and x ∈ Rn with

Lipschitz constant as L.

L ≥ max
i

Li

∴ h > log2L− 1 or L < 2h+1 for convergence. (4.3)

16



4.2 Convergence Rate Theorem

Theorem 4.2.1. A function f : Rn− > R is convex and differentiable, and that its gradient

is Lipschitz continuous with constant L > 0. Then, if we run gradient descent for k

iterations with update rule as ∆θi = −max
(
ϵ, |∇fi|h

|1+∇f2
i |h

)
.∇fi, it will lead to a solution

f (k) satisfying

f
(
x(k)

)
− f (x∗) ≤

∥∥x(0) − x∗
∥∥2

2

2ϵk

provided that h > log2L.

Proof: We try to bound f(x+), the loss function value at the next step in terms of f(x∗),

the optimal value.

As f is convex:

f (x∗) ≥ f(x) +∇fT
x (x∗ − x)

f(x) ≤ f (x∗) +∇fT
x (x− x∗)

Substituting this in to Equation 4.1, we obtain:

f
(
x+

)
≤ f (x∗) +∇f(x)T (x− x∗)− (1− 1

2
Lt)t||∇f(x)∥22

f
(
x+

)
− f (x∗) ≤ ∇f(x)T (x− x∗)− (1− 1

2
Lt)t||∇f(x)∥22

Taking maximum value of L = 2h and for t = 1
2h
,

f
(
x+

)
− f (x∗) ≤ ∇f(x)T (x− x∗)− (1− 1

2
2h

1

2h
)t||∇f(x)∥22

f
(
x+

)
− f (x∗) ≤ ∇f(x)T (x− x∗)− t

2
||∇f(x)∥22

f
(
x+

)
− f (x∗) ≤ 1

2t

(
2t∇f(x)T (x− x∗)− t2∥∇f(x)∥22

)
f
(
x+

)
− f (x∗) ≤ 1

2t

(
2t∇f(x)T (x− x∗)− t2∥∇f(x)∥22 − ∥x− x∗∥22 + ∥x− x∗∥22

)
f
(
x+

)
− f (x∗) ≤ 1

2t

(
∥x− x∗∥22 − ∥x− t∇f(x)− x∗∥22

)

17



Now, for gradient descent, x+ = x− t∇f(x),

f
(
x+

)
− f (x∗) ≤ 1

2t

(
∥x− x∗∥22 −

∥∥x+ − x∗∥∥2

2

)
≤ 1

2tmin

(
∥x− x∗∥22 −

∥∥x+ − x∗∥∥2

2

)

f
(
x+

)
− f (x∗) ≤ 1

2ϵ

(
∥x− x∗∥22 −

∥∥x+ − x∗∥∥2

2

)
This inequality holds for x+ on every epoch of gradient descent. Summing over multiple

epochs, we can deduce:

k∑
i=1

f(x(i))− f (x∗) ≤
k∑

i=1

1

2ϵ

(∥∥x(i−1) − x∗∥∥2

2
−
∥∥x(i) − x∗∥∥2

2

)
=

1

2ϵ

(∥∥x(0) − x∗∥∥2

2
−
∥∥x(k) − x∗∥∥2

2

)
≤ 1

2ϵ

(∥∥x(0) − x∗∥∥2

2

)
Using the fact that f is decreasing on every iteration, we can conclude that,

f
(
x(k)

)
− f (x∗) ≤ 1

k

k∑
i=1

f
(
x(i)

)
− f (x∗)

≤
∥∥x(0) − x∗

∥∥2

2

2ϵk
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Chapter 5

Empirical Analysis

We evaluate the performance of the optimizer first on a 2-dimensional set of non-convex

functions which are traditionally considered difficult to optimize. Then we evaluate the per-

formance on both shallow and deep neural networks for several classification and regression

tasks along with training word embeddings using unsupervised methods.

5.1 Empirical Analysis over 2D non-convex functions

5.1.1 Test functions set

We evaluate the performance on 30 2D non-convex functions which have many local min-

ima, are bowl-shaped, are plate-shaped, are valley-shaped, have steep ridges/drops and are

considered difficult to optimize by gradient descent based methods. They are sourced from

Virtual Library of Simulation Experiments: Test Functions and Datasets [SB]. Two such

functions are shown below:

1. Easom function:

f(x, y) = − cos(x) cos(y) exp−(x−π)2−(y−π)2

The Easom function has several local minima. It is unimodal, and the global minimum

has a small area relative to the search space. It has global minima f(x∗) = −1 at
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Fig. 5.1 Easom function

x∗ = (π, π).

2. Bohachevsky function:

Fig. 5.2 Bohachevsky function

f(x, y) = x2 + 2y2 − 0.3 cos(3πx)− 0.4 cos(4πy) + 0.7

The Bohachevsky functions all have the same similar bowl shape. It has global

minima f(x∗) = 0 at x∗ = (0, 0).

The rest of the functions can be view from Virtual Library of Simulation Experiments:
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Test Functions and Datasets [SB]1.

5.1.2 Validation parameters

We define three empirical validation parameters to score our optimizer against standard

optimizers. They are listed below:

1. Does the descent converge?

Descent converge is considered to be true if there exists some c ∈ N such that |xt+1−

xt| ≤ k ∀ t > c, where k is the allowed error and then c becomes the number of

epochs required to converge.

2. Score over number of epochs required to converge

s1 =


1
c

if ∃ c : |xt+1 − xt| ≤ k ∀ t > c (descent converges)

0 otherwise (descent does not converge)

3. Score over converging at global minimum?

s2 =


10 if |xc − x∗| ≤ k

′

0.1 otherwise

where k
′
is the allowed error, x∗ is the global minima and c is the number of epochs

required to converge.

The score of the optimizer over single test function with one particular initialization

point in R2 can be calculated as s1s2. Overall score is calculated as average over all the

test functions starting from multiple initialization points.

Score =

∑n
i=1

∑m
j=1 s1(fi, xi,j)s2(fi, xi,j)

n+m
(5.1)

1https://www.sfu.ca/~ssurjano/optimization.html
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where, fi is the ith test function and xi,j is the jth initialization point for the ith test

function. During testing, xi,j are randomly initialized ∀ i, j.

5.1.3 Sample Descent graphs for Easom function

Fig. 5.3 Descent graph for Easom function
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Fig. 5.4 Descent graphs for Bohachevsky function

5.1.4 Sample Descent graphs for Bohachevsky function

5.1.5 Sample descent for other tests showing the convergence and score

parameters

5.1.6 Overall Results

The average score over all functions and initialization points as shown in Equation 5.1 is

calculated and presented in the below table. The code to run the descent and re-evaluate

this table is available here 2.

2https://github.com/fliptrail/btp
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Fig. 5.5 Sample descent for other tests showing the convergence and score
parameters
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Optimizer Average Score Number of divergences
SGD 0.314 28

SGD with Momentum 0.322 41
Adagrad 0.282 14
RMSProp 0.520 8
Adam 0.885 4

My optimizer 0.825 0
My optimizer + Momentum 0.641 8

My optimizer + Momentum + EMA 0.944 0

Table 5.1 Score of various optimizers after hyperparameter tuning over 2D
non-convex test suite. The average is taken over 30 ∗ 10 = 300 runs.

5.2 Empirical Analysis over Neural Networks

We evaluate the performance of our optimizer over a suite of shallow, deep and specialized

neural networks. The networks and the datasets used are highlighted below.

5.2.1 Datasets used

The datasets used for the tasks are highlighted below:

1. Airfoil Self-Noise Data Set [DG17]

It is a NASA dataset obtained from a series of aerodynamic and acoustic tests of two

and three-dimensional airfoil blade sections conducted in an anechoic wind tunnel.

It comprises of different size NACA 0012 airfoils (n0012-il) at various wind tunnel

speeds and angles of attack. The span of the airfoil and the observer position were

the same in all of the experiments. [Fed]

2. Fashion-MNIST [XRV17]

Fashion-MNIST is a dataset of Zalando’s article images—consisting of a training set

of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28

grayscale image, associated with a label from 10 classes. The authors intend Fashion-

MNIST to serve as a direct drop-in replacement for the original MNIST dataset
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for benchmarking machine learning algorithms. It shares the same image size and

structure of training and testing splits.

3. The CIFAR-10 [Kri09]

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000

images per class. There are 50000 training images and 10000 test images. The dataset

is divided into five training batches and one test batch, each with 10000 images. The

test batch contains exactly 1000 randomly-selected images from each class. It was

collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.

4. The Penn Treebank [MSM93]

The Penn Treebank (PTB) project selected 2,499 stories from a three year Wall Street

Journal (WSJ) collection of 98,732 stories for syntactic annotation. The Penn Tree-

bank, in its eight years of operation (1989–1996), produced approximately 7 million

words of part-of-speech tagged text, 3 million words of skeletally parsed text, over 2

million words of text parsed for predicateargument structure, and 1.6 million words

of transcribed spoken text annotated for speech disfluencies. The material annotated

includes such wide-ranging genres as IBM computer manuals, nursing notes, Wall

Street Journal articles, and transcribed telephone conversations, among others.

5.2.2 Empirical analysis over specialized neural networks

We run various optimizers including ours and its variations on logistic regression, linear

regression, shallow regression, deep neural regression, single hidden layer classification,

deep classification and unsupervised word embeddings training using Continuos-Bag-Of-

Words (CBoW) [MCCD13] method. The regression tasks are run over Airfoil dataset.

The classification tasks are run over Fashion-MNIST and CIFAR-10 datasets. The word

embeddings training uses The Penn Treebank. Input features in Airfoil, Fashion-MNIST

and CIFAR-10 are both unnormalized and mean and standard deviation normalized. These
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datasets are highlighted in Section 5.2.1. The results showing the convergence epochs are

in Table 5.2 and the convergence graphs are shown in the figures below.

Fig. 5.6 Convergence graph for shallow regression over Airfoil (Normalized)

Fig. 5.7 Convergence graph for shallow regression over Airfoil (Unormalized)

5.2.3 Overall Results
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Table 5.2 Convergence epochs for optimizers over Neural Networks
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Chapter 6

Training Framework API

We create a general neural network training framework in Python over Tensorflow and Keras

such that given any neural network, any dataset, any loss function and any optimizer; it

should be able to train the parameters of the network and plot the loss curve.

The framework is available here for download. 1

6.1 Implemented APIs

6.1.1 get classification data(batch size, normalized)

Arguments:

1. batch size (int): Specifies the batch size for the returned data iterators

2. normalized (bool): Specifies if the input features should be mean and standard

deviation normalized

Returns:

1. Training data iterator (tf.data.Iterator): Tensorflow data iterator to iterate over

tf.data.Dataset for training data.

1https://github.com/fliptrail/btp
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2. Test data iterator (tf.data.Iterator): Tensorflow data iterator to iterate over

tf.data.Dataset for test data.

6.1.2 get regression data(batch size, normalized)

Arguments:

1. batch size (int): Specifies the batch size for the returned data iterators

2. normalized (bool): Specifies if the input features should be mean and standard

deviation normalized

Returns:

1. Training data iterator (tf.data.Iterator): Tensorflow data iterator to iterate over

tf.data.Dataset for training data.

2. Test data iterator (tf.data.Iterator): Tensorflow data iterator to iterate over

tf.data.Dataset for test data.

6.1.3 general trainer(model, data iter, loss, optimizer, hyperparameters,

epochs)

Arguments:

1. model (tf.keras.Model): The neural network in tf.keras.Model format either

built with the Functional API or the Sequential model (tf.keras.Sequential()).

It can accept any neural network in this format.

2. data iter: Data iterator of tf.data.Iterator format.

3. loss (tf.keras.losses): The loss function to use to train the model. Example:

tf.keras.losses.BinaryCrossentropy()
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4. optimizer: A custom or in-built class to specify the update rules. The class should

accept hyperparameters as a dict.

5. hyperparameters (dict): A dictionary containing all the required parameters for

the optimizer.

6. epochs (int): Number of epochs to train upto.

6.1.4 Example Usage

Fig. 6.1 Example showing usage of the Training Framework

6.2 Loss function plot

While training the architecture, a curve of loss function vs number of epochs is generated

as shown in the Figure 6.2.

Fig. 6.2 An example of the loss function curve generated from the training
framework.
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Chapter 7

Conclusion and Future Work

The thesis presents a novel normalizing factor for the gradient descent update rule. By

combining it with other gradient descent optimizers, we are able to get better update

rules which aim to reduce divergence. We analyse the effects of this normalization factor

both theoretically and empirically. Theoretically, we prove its convergence and converge

bounds and empirically we test it over 2D non-convex functions and on neural network

based regression, classification and word embeddings training problems. We also provide a

Training Framework to train Tensorflow and Keras built models using our optimizer.

Future scope of this work includes:

1. Proving the REGRET bounds of this optimizer

2. Proving the series-limit bounds of this optimizer

3. Using the optimizer over Attention-based models

4. Building a better benchmarking strategy to compare performance over neural net-

works
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