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Gradient Descent

ANN: 𝑌 = ℎ 𝜃, 𝑋

Goal: Approximate correct value of Y by fixing ℎ and then 
estimating 𝜃 using loss function 𝑓

Ideal:

Gradient descent:

46



Vanilla Stochastic GD: ∆𝜃 = −𝜂∇𝑓

Issue: 

1. Highly susceptible to chosen learning rate. 

We don’t know appropriate LR beforehand.

2. The pattern of descent changes. Can we 

make it more deterministic?

𝑓 = 𝑥2
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Vanilla Stochastic GD: ∆𝜃 = −𝜂∇𝑓

Issue:

Gradient is way too high at 

our initialization point 

(89.4º). The optimization 

hence diverges even with low 

learning rate.

𝑓 = 10𝑥2
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Source: https://praneethnetrapalli.org/ 49



Taking inspiration from physics
Projectile motion on inclined plane

Downward gravity

Let 𝜃 be the gradient at the point at which our ball collides

Then, ∆𝑥 ≈ sin 𝜃 cos(𝜃)
∆𝑥 → movement along parameter space assuming complete projectile 

motion without collision from loss function

∆𝑥

𝜃

1. High gradient
2. Low gradient 3. Moderate gradient
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With known tan 𝜃 = ∇𝑓,

∴ ∆𝑥 ≈ − sin 𝜃 cos 𝜃 ≈ −
∇𝑓

1 + ∇𝑓 2

Expanding this to ℝ𝑛 as 𝜃 ∈ ℝ𝑛,

∆𝜃𝑖 = −
1

1 + ∇𝑓𝑖
2 . ∇𝑓𝑖

Vectorizing to improve time complexity,

∆𝜃 = −
1

1 + 𝐹
⊙∇𝑓

where,

𝐹 =

∇𝑓0
2 0 0 0

0 ∇𝑓1
2 0 0

0 0 ∇𝑓2
2 0

0 0 0 ∇𝑓3
2
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Nature of ∆𝜃 =
𝜂

1+𝐹
⊙∇𝑓

lim
∇𝑓→∞

∆𝜃 = 0

lim
∇𝑓→0

∆𝜃 = 0
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we make the descent

non-monotonic over the 𝑙2 norm of gradient value (||∇𝜃𝑓||2)



Optimizer Expression
Proposing a new update rules, of the family, 

∆𝜃𝑖 = −
∇𝑓𝑖

ℎ

1 + ∇𝑓𝑖
2 ℎ

. ∇𝑓𝑖

Vectorized implementation: (to reduce time complexity)

∆𝜃 = −
𝐹ℎ

1 + 𝐹2
ℎ . ∇𝑓
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Constraints of this exercise
• Have a GD optimizer which:

1. Does not perform worse

2. Diverges in minimum number of cases

3. Convergence can be proved

4. Has similar asymptotic time complexity

• Best case:

 Gives a better convergence value

 Takes less number of iterations

 Converges towards global minima instead of local minima

 Regret bound is 𝑂(√𝑇)
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Analysis
• Theoretical

 Convergence Validity Theorem

 Convergence Rate Theorem

• Empirical
 2D non-convex functions

 Does it converge?

 Score over number of epochs required to converge

 Score over converging at global minimum

 Neural Networks

 Regression

 Airfoil normalized and unnormalized

 Classification

 Fashion-MNIST

 CIFAR-10

 Word Embeddings (CBoW)

 The Penn Treebank 55



Theoretical Analysis
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Theoretical Analysis
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Empirical Validation Parameters
1. Does it converge?

True if there exists some 𝑐 such that 𝜃𝑡+1 − 𝜃𝑡 ≤ 𝑘 for all 𝑡 > 𝑐 ,

𝑘 → 𝑒𝑟𝑟𝑜𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑐 → 𝑒𝑝𝑜𝑐ℎ𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒
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Empirical Validation Parameters
2. Score over number of epochs required to converge
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Empirical Validation Parameters
3. Score over converging at global minimum
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Empirical Validation Parameters
Overall Score: (Average over 300 runs for 𝑠1 ∗ 𝑠2)
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10 random initializations for 30 functions each = 300



2D Test Functions

6430 such odd non-convex functions taken from https://www.sfu.ca/~ssurjano/optimization.html



2D Test Functions
30 such odd non-convex functions taken from 

https://www.sfu.ca/~ssurjano/optimization.html
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Scores over 2D Test Functions
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Variations of optimizer
Vanilla + Momentum

We add a first order momentum term to accelerate our descent and to add a 
fraction of the previous update to the current update vector.
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Variations of optimizer
Vanilla + EMA

We use the Exponential Moving Average (EMA) of the previous gradients to 
account for those values in a similar fashion as of RMSProp
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Variations of optimizer
Vanilla + Momentum + EMA

We add a momentum term to the previous update rule with EMA.
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Analysis over Neural Networks
• Each dataset is used in two formats

 Input features normalized

 Input features unnormalized

• Each of this data combination is passed to both a shallow and deep 
neural network and they are trained

• Each of this data-network pair is trained using 5 different optimizers 
and the results are logged

• Total = 10*5 = 50 convergence results

• Word embeddings using CBoW over Penn Treebank are trained as a 
specialized task.
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Analysis over Neural Networks
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Number of epochs to converge



Convergence Graphs
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Convergence Graphs

74



Results on Shallow NN (Airfoil dataset) –
Regression with data normalization
• With h = 3 my optimizer
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Normal SGD

Lr = 0.05
Uniform convergence guaranteed



Shallow Fashion MNIST without 
normalization
• my optimizer
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Normal SGD

Very small lr = 0.005



Deep Fashion MNIST with 
normalization
• my optimizer
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Normal SGD



Deep Fashion MNIST without 
normalization
• my optimizer

78

Normal SGD



General Training Framework API
• Give any model, any dataset, any loss function, any optimizer (either custom 

or in-built) – it SHOULD train! and plot the loss curve

• Framework built over Tensorflow/Keras and can accept neural network 
models, data iterators and loss functions in Keras in-built format and 
directly train over it.
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get_classification_data(batch_size, normalized)

get_regression_data(batch_size, normalized)

general_trainer(tf.keras.Model, tf.data.Iterator, tf.keras.losses, 

optimizer, hyperparameters, epochs)



General Training Framework API
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Future Work
• 1. Proving the REGRET bounds of this optimizer

• 2. Proving the series-limit bounds of this optimizer

• 3. Using the optimizer over Attention-based models

• 4. Building a better benchmarking strategy to compare performance over 
neural networks
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