LLearning how to learn

Descending down steep curves
Amish Mittal

Acknowledgements

I would like to thank my supervisor and mentor Prof

Jimson for always supporting me in my work and helping
me achieve my career goals.

Gradient Descent

ANN:Y = h(6,X)

(Goal: Approximate correct value of Y by fixing h and then
estimating 6 using loss function f

Ideal: f(0) = Eqpypo L(R(0, X),Y)

F7(0) = E(zy)~paua L(M(G, X), - Z L(h(0,z")

Gradient descent: 6, =6, — 1 V, [*(0)

Vanilla Stochastic GD: A8 = —nVf
f=x

25_| i 25_| L | 1 L 1 i
201 - 20 4 L
e~
% 151 - 15 -
Il
Elﬂ" r 10 4 r
51 / i 51 \ -
T T T T T] T T - T T I
—4 -2 0

1
2 4 -4 =2 0 2 4
¥ with learning rate 0.2 ¥ with learning rate 0.8

flx) = x~2

Issue:

1. Highly susceptible to chosen learning rate.
We don’t know appropriate LR beforehand.

2. The pattern of descent changes. Can we
make it more deterministic?

Vanilla Stochastic GD: A8 = —nVf

f = 10x?

show_trace(jgd(8.8, f grad, 18), f, "l1ex"2",

0.4s
epoch 18 x: 2883251953125.0800800

show_tracegd(©.12, ¥ grad, 18), f, "

5.59s

epoch 18, x: 144.627327

Issue:

Gradient is way too high at
our 1nitialization point
(89.4°). The optimization
hence diverges even with low
learning rate.

Gradient Descent Convergence

Very steep so cannot
use nign

/

Very flat near x™ so small n
makes it slow

Source: https://praneethnetrapalli.org/

Taking inspiration from physics

Projectile motion on inclined plane

1. High gradient

N

Downward gravity

y

g 2. Low gradient 3. Moderate gradient
o

A
v

Ax

Let 6 be the gradient at the point at which our ball collides
Then, Ax = sin(0) cos(0)

Ax — movement along parameter space assuming complete projectile
motion without collision from loss function

With known tan(8) = Vf,

Expanding this to R™ as 8 € R",

Vectorizing to improve time complexity,

where,

\Y
~ Ax =~ —sin(0) cos(0) =~ — T];ﬂz
AG; = 1 \Y
14 VR Ji
AO = 1 OV
T A
VfZ 0 0 0]
0 VfZ 0 0
0 0 V£ 0
| 0 0 0 Vfi

— N
Nature of A8 = — O Vf

lim A =0
V-0

lim A6 =0
Vf—)oo

35 4 45 5

we make the descent

-0.5

non-monotonic over the [, norm of gradient value (||Vgf||,) i i

Optimizer Expression

Proposing a new update rules, of the family,

Vfil"
Agi — — fl . V f i
11+ Vf? \h
i
Vectorized implementation: (to reduce time complexity)
Fh
AG = - Vf

1+ F?

Constraints of this exercise

- Have a GD optimizer which:
1. Does not perform worse
2. Diverges in minimum number of cases
3. Convergence can be proved
4. Has similar asymptotic time complexity

- Best case:
- G1ves a better convergence value
- Takes less number of iterations
- Converges towards global minima instead of local minima

- Regret bound is 0(VT)

Analysis

- Theoretical
* Convergence Validity Theorem
- Convergence Rate Theorem

- Empirical
+ 2D non-convex functions
* Does it converge?
* Score over number of epochs required to converge
* Score over converging at global minimum
* Neural Networks
- Regression
- Airfoil normalized and unnormalized
- Classification
* Fashion-MNIST
- CIFAR-10
- Word Embeddings (CBoW)
* The Penn Treebank

Theoretical Analysis

4.1 Convergence Validity Theorem

Theorem 4.1.1. A function f : B"— > R is conver and differentiable, and that its gradient

is Lipschitz continuous with constant L > 0, i.e. we have ||V f: — Vf,|| < L||x — yl|2 for
- ke

any r,y. Then, if we run gradient descent with update rule as Af; = JIT‘_T—_{;'};—&.?_}‘}, it wnll

always converge provided h = logs L — 1.

V|
f_ — |1|_|_‘éf|2|h vf.ra

1

f@®) < flz) — (1= 5Lit) ||V f(2)]]3

2
2
L; < -
t

t(Vf;) would be maximum at points where d{jg ;:'” = () and d;;{) <.

f’s minimum value would be 2/+1,

Li < 2.‘14—1

We now expand the result to n - dimensions considering f : R"— > R and x € R"” with

Lipschitz constant as L.

L > max L;
T

Theoretical Analysis

4.2 Convergence Rate Theorem

Theorem 4.2.1. A function [: B"— > R s conver and differentiable, and that its gradient

1s Lipschitz continuous with constant L = 0. Then, if we run gradient descent for k

iterations with update rule as Af; = — max (€, “”LTJ};'T,;) N fi, it will lead to a solution
') satisfying
0 ”.1:{”] —z*||]
() - f(x") < =
Fa®) = f @) €

provided that h = logs L.

(12 + % |2 1 * (12 . #
Tr—x .—||::f: — X .){_ﬁ (:r—:r —HI —::f:|
(Il =21) < 5 (Il =

)

This inequality holds for z* on every epoch of gradient descent. Summing over multiple

fa™)—f(z") < %

epochs, we can deduce:

.Ii.'
D) =16 < B g () ol e -

)

‘.’L‘{m — "

2ek

i |

Empirical Validation Parameters

1. Does 1t converge?

True if there exists some ¢ such that |6,,; — 0] <k forallt > c,

k — error parameter, c — epochs required to converge

Empirical Validation Parameters

2. Score over number of epochs required to converge

if 3 ¢:|xper —a| <k ¥ t>e¢ (descent converges)
8] = 4

0 otherwise (descent does not converge)

Empirical Validation Parameters

3. Score over converging at global minimum

-
10 if |[z.—a'| <k
Sg = 4

(0.1 otherwise
%

Empirical Validation Parameters

Overall Score: (Average over 300 runs for s; * s,)

Z?z] ZT:I Sl(fi-, If.-j)‘gi’(fi: Ifrj)

n -+ m

Score =

10 random 1nitializations for 30 functions each = 300

2D Test Functions

Easom Functi .
asom Func lon Three-Hump Camel Function

fix1.x2)

fix1,%2)

f(x) = —cos(z,) cos(z,) exp (—(z1 — 7)? — (z2 — 7)?) |
F(x) = 227 — 1.05z + Isl + 2,2, + 22

30 such odd non-convex functions taken from https://www.sfu.ca/~ssurjano/optimization.html

Rastrigin Function "o

r.A
Kol

Petrn Function d, beta

120 o

R A AR OB A
80 . AVROR 3\\ "“f‘\.’ LA A g ;
g - so J/ MRV fu\m\uu*
: = *“ \n‘ \“. 1{1 ,ﬂt, |
2 - :”t \‘ \ "1 '
LA

f(x) = 10d + Z (27 — 10cos(27z;)]

i=1

30 such odd non-convex functions taken from

2D Te St FunCtlonS https://www.sfu.ca/~ssurjano/optimization.html

Scores over 2D Test Functions

Optimizer Average Score | Number of divergences
SGD 0.314 28
SGD with Momentum 0.322 41
Adagrad (.282 14
RMSProp 0.520 8
Adam (.885 4
My optimizer 0.825 0
My optimizer + Momentum 0.641 3
My optimizer + Momentum + EMA 0.944 0

Table 5.1 Score of various optimizers after hyperparameter tuning over 2D
non-convex test suite. The average is taken over 30 % 10 = 300 runs.

Using function: MCCORMICK with seed: 2
Converged: True Converged:
Converged at Global Minima: True Converged

3 - ’ umber epoCcns
Number of epochs required to € erge: 7/ | of epochs
Score: 1.4285714285714286 Score: 1.

15
10

Using function:
True
at Global
required to converge:
4285714285714286

THREEHUMP_CAMEL with

05

-1.0

15

"‘ \J L 4 T

-20 -15 -10 05 00 05 10 15

Using function: MCCORMICK with seed: 5 Using function: SPHERE with seed: S
Converged: True Converged: True
Converged at Global Minima: False Converged at Global Minima: True
Number of epochs required to converge: 13 Number of epochs required to converge: 19
Score: ©.015384615384615385 Score: ©.5263157894736842

Variations of optimizer

Vanilla + Momentum

We add a first order momentum term to accelerate our descent and to add a
fraction of the previous update to the current update vector.

v’

Variations of optimizer

Vanilla + EMA

We use the Exponential Moving Average (EMA) of the previous gradients to
account for those values in a similar fashion as of RMSProp

E[Vf*; =0.9E[Vf?;_1 + 0.1V f?

Vfil") U
Af;, = —max | e. . V1
(L+ V") YEVfY +e f

Variations of optimizer

Vanilla + Momentum + EMA

We add a momentum term to the previous update rule with EMA.

E[Vf*; =0.9E[Vf?;_1 + 0.1V f?

IV fil”) N
Af;; = —max | e, . . Nfi—v A,
! (L+ V") YENV i +e Ji =7 B

Analysis over Neural Networks

- Each dataset is used in two formats
 Input features normalized
 Input features unnormalized

- Each of this data combination is passed to both a shallow and deep
neural network and they are trained

- Each of this data-network pair is trained using 5 different optimizers
and the results are logged

- Total = 10*5 = 50 convergence results

- Word embeddings using CBoW over Penn Treebank are trained as a
specialized task.

Analysis over Neural Networks

(&L ¥]

- SGD | Adagrad | Adam | My optimizer | My opt. + Mom. + EMA

Shallow Regression over Airfoil inf 1 1 1 1

Shallow Regression over Airfoil (Normalized) 2 1 1 1 1
Deep Regression over Airfoil inf 2 2 2 1

Deep Regression over Airfoil (Normalized) i] 1 5 3
Shallow Classification over Fashion-MNIST inf inf inf 3 3
Shallow Classification over Fashion-MNIST (Normalized) i 2 2 3 3
Deep Classification over Fashion-MNIST inf 23 inf 40 14

Deep Classification over Fashion-MNIST (Normalized) 1 3 3) 3
Shallow Classification over CIFAR-10 (Normalized) 32 15 20 22 19
Deep Classification over CIFAR-10 (Normalized) +l 40 18 28 24
Word Embeddings using Penn Treebank (CBoW) inf 122 90 151 111

Number of epochs to converge

Convergence Graphs

1.0
—— Adagrad
My + Mom + EMA
0.9 —— SGD + Mom
— 5SGD
0.8 4 Adam
0.7 4
0.6 1
0.5 4
D.4 T L)
0 5 10 15 20 25 30

Fig. 5.6 Convergence graph for shallow regression over Airfoil (Normalized)

Convergence Graphs

le29
| -~ Adagrad
4l 5GD + Mom
—— My + Mom + EMA
—— Adam
3 — 5GD
2 .
1 -
D - /
0 5 10 15 20 25 30

Fig. 5.7 Convergence graph for shallow regression over Airfoil (Unormalized)

Results on Shallow NN (Airfoil dataset) —
Regression with data normalization

- With h = 3 my optimizer
Normal SGD

0.30 1

i

0.26 1

00 05 10 15 20 25 3.0 T . T T .
epoch 00 05 10 15 20 25 3.0

epoch

_ Lr = 0.05
Uniform convergence guaranteed

Shallow Fashion MNIST without

normalization

- my optimizer

Normal SGD

loss: 13.381, 8.398 sec/fepoch loss: 275.119, 8.379 sec/epoch

Very small Ir = 0.005

Deep Fashion MNIST with

normalization

- my optimizer

Normal SGD

0 5 10 15 20
epoch

Deep Fashion MNIST without

normalization

- my optimizer

Normal SGD

General Training Framework API

- Give any model, any dataset, any loss function, any optimizer (either custom
or in-built) — 1t SHOULD train! and plot the loss curve

- Framework built over Tensorflow/Keras and can accept neural network
models, data 1terators and loss functions in Keras in-built format and
directly train over it.

get classification data (batch size, normalized)
get regression data(batch size, normalized)

general trainer (tf.keras.Model, tf.data.Iterator, tf.keras.losses,
optimizer, hyperparameters, epochs)

General Training Framework API

data iter, test iter = get classification data(batch si:)56, normalized

loss tf.keras.losses.SparseCategoricalCrossentropy(from logitss)

general trainer(fashion mnist, data iter, loss, ' Ak

Future Work

- 1. Proving the REGRET bounds of this optimizer
- 2. Proving the series-limit bounds of this optimizer
- 3. Using the optimizer over Attention-based models

- 4. Building a better benchmarking strategy to compare performance over
neural networks

