
Learning how to learn
Descending down steep curves
Amish Mittal

Acknowledgements

45

I would like to thank my supervisor and mentor Prof
Jimson for always supporting me in my work and helping
me achieve my career goals.

Gradient Descent

ANN: 𝑌 = ℎ 𝜃, 𝑋

Goal: Approximate correct value of Y by fixing ℎ and then
estimating 𝜃 using loss function 𝑓

Ideal:

Gradient descent:

46

Vanilla Stochastic GD: ∆𝜃 = −𝜂∇𝑓

Issue:

1. Highly susceptible to chosen learning rate.

We don’t know appropriate LR beforehand.

2. The pattern of descent changes. Can we

make it more deterministic?

𝑓 = 𝑥2

47

Vanilla Stochastic GD: ∆𝜃 = −𝜂∇𝑓

Issue:

Gradient is way too high at

our initialization point

(89.4º). The optimization

hence diverges even with low

learning rate.

𝑓 = 10𝑥2

48

Source: https://praneethnetrapalli.org/ 49

Taking inspiration from physics
Projectile motion on inclined plane

Downward gravity

Let 𝜃 be the gradient at the point at which our ball collides

Then, ∆𝑥 ≈ sin 𝜃 cos(𝜃)
∆𝑥 → movement along parameter space assuming complete projectile

motion without collision from loss function

∆𝑥

𝜃

1. High gradient
2. Low gradient 3. Moderate gradient

50

With known tan 𝜃 = ∇𝑓,

∴ ∆𝑥 ≈ − sin 𝜃 cos 𝜃 ≈ −
∇𝑓

1 + ∇𝑓 2

Expanding this to ℝ𝑛 as 𝜃 ∈ ℝ𝑛,

∆𝜃𝑖 = −
1

1 + ∇𝑓𝑖
2 . ∇𝑓𝑖

Vectorizing to improve time complexity,

∆𝜃 = −
1

1 + 𝐹
⊙∇𝑓

where,

𝐹 =

∇𝑓0
2 0 0 0

0 ∇𝑓1
2 0 0

0 0 ∇𝑓2
2 0

0 0 0 ∇𝑓3
2

51

Nature of ∆𝜃 =
𝜂

1+𝐹
⊙∇𝑓

lim
∇𝑓→∞

∆𝜃 = 0

lim
∇𝑓→0

∆𝜃 = 0

52
we make the descent

non-monotonic over the 𝑙2 norm of gradient value (||∇𝜃𝑓||2)

Optimizer Expression
Proposing a new update rules, of the family,

∆𝜃𝑖 = −
∇𝑓𝑖

ℎ

1 + ∇𝑓𝑖
2 ℎ

. ∇𝑓𝑖

Vectorized implementation: (to reduce time complexity)

∆𝜃 = −
𝐹ℎ

1 + 𝐹2
ℎ . ∇𝑓

53

Constraints of this exercise
• Have a GD optimizer which:

1. Does not perform worse

2. Diverges in minimum number of cases

3. Convergence can be proved

4. Has similar asymptotic time complexity

• Best case:

 Gives a better convergence value

 Takes less number of iterations

 Converges towards global minima instead of local minima

 Regret bound is 𝑂(√𝑇)

54

Analysis
• Theoretical

 Convergence Validity Theorem

 Convergence Rate Theorem

• Empirical
 2D non-convex functions

 Does it converge?

 Score over number of epochs required to converge

 Score over converging at global minimum

 Neural Networks

 Regression

 Airfoil normalized and unnormalized

 Classification

 Fashion-MNIST

 CIFAR-10

 Word Embeddings (CBoW)

 The Penn Treebank 55

Theoretical Analysis

56

57

Theoretical Analysis

58

59

Empirical Validation Parameters
1. Does it converge?

True if there exists some 𝑐 such that 𝜃𝑡+1 − 𝜃𝑡 ≤ 𝑘 for all 𝑡 > 𝑐 ,

𝑘 → 𝑒𝑟𝑟𝑜𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑐 → 𝑒𝑝𝑜𝑐ℎ𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒

60

Empirical Validation Parameters
2. Score over number of epochs required to converge

61

Empirical Validation Parameters
3. Score over converging at global minimum

62

Empirical Validation Parameters
Overall Score: (Average over 300 runs for 𝑠1 ∗ 𝑠2)

63

10 random initializations for 30 functions each = 300

2D Test Functions

6430 such odd non-convex functions taken from https://www.sfu.ca/~ssurjano/optimization.html

2D Test Functions
30 such odd non-convex functions taken from

https://www.sfu.ca/~ssurjano/optimization.html

65

Scores over 2D Test Functions

66

67

Variations of optimizer
Vanilla + Momentum

We add a first order momentum term to accelerate our descent and to add a
fraction of the previous update to the current update vector.

68

Variations of optimizer
Vanilla + EMA

We use the Exponential Moving Average (EMA) of the previous gradients to
account for those values in a similar fashion as of RMSProp

69

Variations of optimizer
Vanilla + Momentum + EMA

We add a momentum term to the previous update rule with EMA.

70

Analysis over Neural Networks
• Each dataset is used in two formats

 Input features normalized

 Input features unnormalized

• Each of this data combination is passed to both a shallow and deep
neural network and they are trained

• Each of this data-network pair is trained using 5 different optimizers
and the results are logged

• Total = 10*5 = 50 convergence results

• Word embeddings using CBoW over Penn Treebank are trained as a
specialized task.

71

Analysis over Neural Networks

72

Number of epochs to converge

Convergence Graphs

73

Convergence Graphs

74

Results on Shallow NN (Airfoil dataset) –
Regression with data normalization
• With h = 3 my optimizer

75

Normal SGD

Lr = 0.05
Uniform convergence guaranteed

Shallow Fashion MNIST without
normalization
• my optimizer

76

Normal SGD

Very small lr = 0.005

Deep Fashion MNIST with
normalization
• my optimizer

77

Normal SGD

Deep Fashion MNIST without
normalization
• my optimizer

78

Normal SGD

General Training Framework API
• Give any model, any dataset, any loss function, any optimizer (either custom

or in-built) – it SHOULD train! and plot the loss curve

• Framework built over Tensorflow/Keras and can accept neural network
models, data iterators and loss functions in Keras in-built format and
directly train over it.

79

get_classification_data(batch_size, normalized)

get_regression_data(batch_size, normalized)

general_trainer(tf.keras.Model, tf.data.Iterator, tf.keras.losses,

optimizer, hyperparameters, epochs)

General Training Framework API

80

Future Work
• 1. Proving the REGRET bounds of this optimizer

• 2. Proving the series-limit bounds of this optimizer

• 3. Using the optimizer over Attention-based models

• 4. Building a better benchmarking strategy to compare performance over
neural networks

81

